

**: k** 

delta Network

# FOR REGULATED

FINANCE



- \* Market Challenges
  - Introduction to delta
  - Stakeholder Snapshots
  - Appendix: Feature Details

Market Challenges

WHY IS TOKENIZED FINANCE STUCK

IN THE "PILOT" STAGE?



### The Control Gap

Public blockchains treat every participant the same.

The Result:

Public blockchains were designed to facilitate trust minimized, distributed compute over non-sovereign assets.

\* Because the rule-set is fixed at the network level, most regulated players retreat to the walled-gardens of permissioned chains or centralized rollups.

- \* While they are now being retrofitted to facilitate regulated finance with out-of-band, patchwork solutions, they offer no native way for an issuer to control the purchasers of a fund or for an exchange to delay finality until risk checks clear.
- In doing so, we are recreating the asset silos and associated frictions that blockchains promised to break down.



### The Cost Gap

Every participant must rewrite their stack and manage a "digital twin."

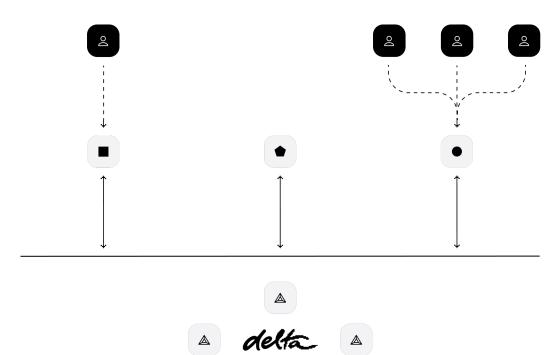
\* The operational burden of running a ledger and/or rewriting your stack to be "smart-contract language" compatible requires a huge amount of upfront cost and resources. \* Businesses that do not have the resources or appetite to rebuild their stack now need to put their trust in new intermediaries to participate.

The Result:

\* Budgets balloon, timelines stretch, projected operating savings are outweighed by sunk costs -> your tokenization initiative loses momentum.

Introduction to delta

**DELTA ELIMINATES** 


THESE TRADE-OFFS

### What exactly is delta?

delta is a permissionless asset ledger,
designed to combine the global
settlement properties of legacy
blockchains with the scale, control,
simplicity, and security offered by modern
compute environments.







#### Domains

- \* Private "Domains" let each institution run its own execution environment and user interfaces inside its preferred cloud or data center
- \* The delta SDK acts as a thin adapter that listens to your existing workflow software and converts user actions into ledger updates
- Domains execute transactions and settle the resultant state differences to the base ledger at a cadence of their choice, after performing compliance and security checks

#### Global Ledger

- Operated by independent validators who maintain a unified global state, recording the balance of every account and asset
- Secured by a minimal set of globally enforced spending rules: valid signatures required, no double-spends, issuer-defined token restrictions

#### **DELTA DOMAINS: DETAILED VIEW**



#### delta Domains

#### Private Domain

Existing systems for:

- Interfaces
- Internal ledger
- Back-office workflows

#### **Execution Environment**

Execution environment for updating the asset

#### ledger:

- Private codebase
- Custom policies
- On-demand settlement

#### Global Asset Ledger

- Settled account balances
- Global and custom policies enforced by

network of validators

Provided in delta's SDK

Globally viewable

Contained within company firewall



| Component                                                  | Purpose                                                                                                                                                                                                                                                                                                                            | Who controls it?                                         |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Global Asset Ledger                                        | <ul> <li>Final ownership record</li> <li>Enforces minimal set of "global laws" associated with state updates (valid signatures, no double spends, issuer-defined token restrictions).</li> <li>If a user is censored by a domain, the validator set also ensures the right to "force migrate" assets to another domain.</li> </ul> | Decentralized validator set                              |
| Domains                                                    | <ul> <li>Private execution environments that batch updates to the global ledger.</li> <li>Run order routing, KYC, pricing, fund admin, risk checks (whatever you already do).</li> </ul>                                                                                                                                           | The institution (bank, asset manager, exchange, fintech) |
| Passkey-secured Vaults (other signature schemes supported) | User accounts that hold any delta asset and<br>optional encrypted credentials (e.g. ACH tokens,<br>off-chain wallets).                                                                                                                                                                                                             | End users (with optional custodian co-sign)              |

Stakeholder Snapshots

## STAKEHOLDER

SNAPSHOTS



### ASSET ISSUER/FUND MANAGER

What you get on Day 1

- \* Native token-level RBAC ("40 Act-only," "qualified buyers," region locks)
- \* On-demand settlement (e.g. batch submit updates when transfer agent closes books)

Why this is different

- No need to rewrite your stack and maintain a separate "digital twin"
- Your existing OMS/TA posts directly to delta via API's
- Transfer logic lives in the token to ensure that assets stay with approved accounts



### EXCHANGE/MARKETPLACE (DOMAIN)

#### What you get on Day 1

- Private execution and sequencing logic (matching engine, custom fees)
- \* <10ms tx confirmations; batch finality when risk checks clear
- \* Escape hatch: if you go dark, users can migrate balances

#### Why this is different

- \* You control latency and compliance
- \* No smart contract rewrites
- Interop is supported natively; No withdrawal windows / 7-day exits



### CUSTODIAN/TRUST COMPANY

#### What you get on Day 1

- \* Flexible signature scheme setup for full custody or hybrid custody (passkey inclusive); no hot-wallet key risk
- \* Proof-of-reserves API for auditors
- \* New revenue: domain-level settlement & collateral services

#### Why this is different

\* Hold a single ledger key instead of juggling chainspecific infrastructure



### INVESTORS / ASSET HOLDERS

#### What you get on Day 1

- \* Minimized Total Cost of Ownership (TCO): seamless integration with existing infra and workflows
- \* Global accounts and assets: no wallet management complexity or bridging dependencies
- \* Escape hatch: if you go dark, users can migrate balances

#### Why this is different

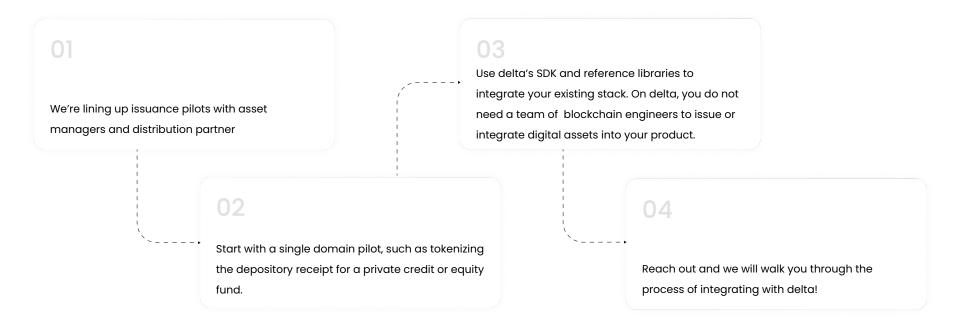
- \* Integrate digital assets in days, not years
- \* No seed phrases, no hidden intermediaries

### How delta compares

delta's two-layer network provides:

- \* Global reach like Ethereum
- \* Operation control like an internal database

#### End state:


- \* 24/7 settlement system with uniformity at the asset and account level
- \* Assets move freely between issuers, custodians, exchanges and marketplaces, subject to issuer-defined controls
- \* Companies retain full control of the user experience, tech stack, and economics, while outsourcing finality to a neutral, decentralized asset ledger





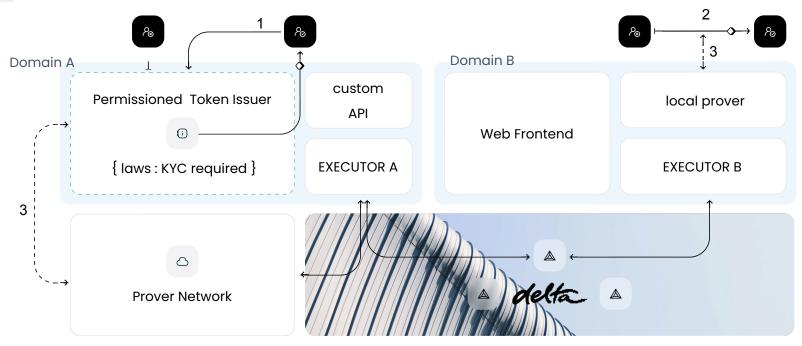
# delta unlocks regulated finance for tokenized assets.

Issue, trade and service any asset on a single, permissionless ledger without surrendering security control, compliance, or client privacy. Next Steps:



Appendix

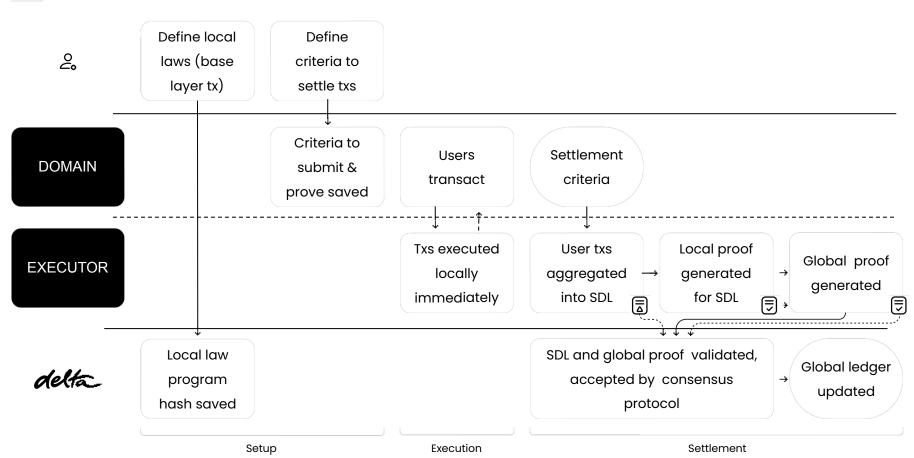
**APPENDIX** 


#### DELTA FEATURE COMPARISON: SUMMARY



| Feature                           | Public chain (e.g. Ethereum)<br>+ add-on         | Public chain with built-in controls (e.g. Stellar, Ripple) | Permissioned Chain / DLTs (e.g. Canton)                        | delta                                                                                |
|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Access Control (RBAC)             | Smart-contract adds-on (Custom solidity).        | Binary trust-lines.                                        | Daml templates per asset.                                      | Native at ledger, per-asset policy objects, no extra contracts.                      |
| Settlement Control                | Network decides (probabilistic finality).        | Network decides.                                           | Permissioned operator set for the global synchronizer decides. | Domain decides: settle instantly or in batches, forced-withdraw safety valve.        |
| Privacy / Transparency            | All balances public; obfuscation via wrappers.   | All balances public.                                       | Encrypted sub-transactions; opaque to external tools.          | Issuer chooses: full-ledger,<br>omnibus + Merkle proofs, or<br>per-vault disclosure. |
| Integration Model                 | Solidity + oracle feeds or off-chain APIs.       | Horizon API (limited tx types).                            | Daml + bespoke adapters.                                       | REST / gRPC SDK; keep existing databases, CI/CD, cloud stack.                        |
| Interoperability                  | One ledger—but wrapped assets & bridges for L2s. | One ledger only if every app uses Stellar.                 | Each network siloed;<br>cross-silo sync via bridges.           | One canonical ledger plus cross-domain transfers with no bridges or wrappers.        |
| Execution Control /<br>Throughput | Shared EVM; gas & MEV spikes.                    | Shared consensus; limited opcodes.                         | Must run synchronizer & validator nodes.                       | Your code, your infra; unlimited horizontal scale; zero MEV.                         |

#### ASSET-LEVEL CONTROLS: TOKEN LAWS






#### Token laws are enforced at multiple levels:

- 1. Initial token issuance (mint transaction on issuer domain)
- 2. Transfers between user vaults (transaction on any domain)
- 3. Proving process on every domain, to ensure only law abiding transactions are finalized to the delta base layer



